# Course Curriculum of PG Programme

(Major, Minor, Supporting and Non-credit courses)

MASTER OF SCIENCE IN SOIL SCIENCE

SEMESTER-II



# SYLLABUS MASTER OF SCIENCE IN SOIL SCIENCE SEMESTER-II

| COURSE CODE           | COURSE CODE COURSE TITLE                                                |     |  |  |  |  |  |  |  |
|-----------------------|-------------------------------------------------------------------------|-----|--|--|--|--|--|--|--|
| MAJOR                 |                                                                         |     |  |  |  |  |  |  |  |
| Soil 501              | Soil Physics                                                            | 2+1 |  |  |  |  |  |  |  |
| Soil 502              | Soil Fertility and Fertilizer use                                       | 3+1 |  |  |  |  |  |  |  |
| Soil 509              | Soil Water and Air Pollution                                            | 2+1 |  |  |  |  |  |  |  |
|                       | MINOR                                                                   |     |  |  |  |  |  |  |  |
| Agron 502             | Principles and Practices of Soil Fertility                              | 2+1 |  |  |  |  |  |  |  |
|                       | SUPPORTING                                                              |     |  |  |  |  |  |  |  |
| Agron 503             | Principles and Practices of Weed Management                             | 2+1 |  |  |  |  |  |  |  |
|                       | NON-CREDIT                                                              |     |  |  |  |  |  |  |  |
| PGS 504<br>(e-Course) | Basic Concepts in Laboratory Techniques                                 |     |  |  |  |  |  |  |  |
| PGS 505<br>(e-Course) | Agricultural Research, Research Ethics and Rural Development Programmes | 1+0 |  |  |  |  |  |  |  |



# Shri Vaishnav Vidyapeeth Vishwavidyalaya, Indore Shri Vaishnav Institute of Agriculture

M.Sc. (Ag.) Soil Science

|             |              | TEACHING & EVALUATION SCHEME  |                  |                         |                               |                         |   |   |       |  |  |
|-------------|--------------|-------------------------------|------------------|-------------------------|-------------------------------|-------------------------|---|---|-------|--|--|
|             |              | ,                             | Theory           |                         | Prac                          | Credits                 |   |   |       |  |  |
| Course Code | Course Name  | END SEM<br>University<br>Exam | Mid term<br>exam | Teachers<br>Assessment* | END SEM<br>University<br>Exam | Teachers<br>Assessment* | L | P | Total |  |  |
| Soils 501   | Soil Physics | 50                            | 30               | 00                      | 15                            | 05                      | 2 | 1 | 3     |  |  |

- 1. Legends: L Lecture; P Practical
- 2. \*Teacher Assessment shall be based on following components: Quiz / Assignment / Project / Participation in Class.

# **Objective**

 To impart basic knowledge about soil physical properties and processes in relation to plant growth.

#### Course outcome

- Upon completion of this course, students will be able to apply the knowledge about the various physical processes and properties.
- Students will be able to understand soil structure-genesis, types, characterization and management soil structure
- Students will able to use various techniques used to analyze the physical properties.

## **Theory**

#### UNIT I

Basic principles of physics applied to soils, soil as a three phase system.

#### UNIT II

Soil texture, textural classes, mechanical analysis, specific surface.

#### UNIT III

Soil consistence; dispersion and workability of soils; soil compaction and consolidation; soil strength; swelling and shrinkage - basic concepts. Alleviation of soil physical constraints for crop production. Soil erosion and edibility. Composition of soil air; renewal of soil air - convective flow and diffusion; measurement of soil aeration; aeration requirement for plant growth; soil air management. Modes of energy transfer in soils; energy balance; thermal properties of soil; measurement of soil temperature; soil temperature in relation to plant growth; soil temperature management.

#### **UNIT IV**

Soil structure - genesis, types, characteristics of good soil tilth; soil crusting - mechanism, factors

- Measurement of soil-water content by different methods. Measurement of soil-water potential by using tensiometer and gypsum Blocks.
- Determination of soil-moisture characteristics curve and computation of pore-size, distribution.
- Determination of hydraulic conductivity under saturated and unsaturated conditions. Determination of infiltration rate of soil.
- Determination of aeration porosity and oxygen diffusion rate. Soil temperature measurements by different methods.
- Estimation of water balance components in bare and cropped fields.

#### **Teaching methods/activities**

Classroom teaching with AV aids, group discussion, oral presentation by students.

#### **Learning outcome**

Experience on the knowledge of soil physical properties and processes in relation to plant growth.

#### **Suggested Readings**

- Baver LD, Gardner WH & Gardner WR. 1972. Soil Physics. John Wiley & Sons.
- Ghildyal BP & Tripathi RP. 2001. Soil Physics. New Age International.
- Hanks JR & Ashcroft GL. 1980. Applied Soil Physics. Springer Verlag.
- Hillel D. 1972. Optimizing the Soil Physical Environment toward Greater Crop Yields. Academic Press.
- Hillel D. 1980. Applications of Soil Physics. Academic Press.
- Hillel D. 1980. Fundamentals of Soil Physics. Academic Press.
- Hillel D. 1998. Environmental Soil Physics. Academic Press.
- Hillel D. 2003. Introduction to Environmental Soil Physics. Academic Press.
- Indian Society of Soil Science. 2002. Fundamentals of Soil Science. ISSS, New Delhi.
- Kirkham D & Powers WL. 1972. Advanced Soil Physics. Wiley- Interscience.
- Kohnke H. 1968. Soil Physics. McGraw Hill.
- Lal R & Shukla MK. 2004. Principles of Soil Physics. Marcel Dekker.
- Oswal MC. 1994. Soil Physics.Oxford & IBH.

SVVV, Indore



# Shri Vaishnav Vidyapeeth Vishwavidyalaya, Indore Shri Vaishnav Institute of Agriculture

M.Sc. (Ag.) Soil Science

|             |                                   | TEACHING & EVALUATION SCHEME  |                  |                         |                               |                         |   |   |       |  |
|-------------|-----------------------------------|-------------------------------|------------------|-------------------------|-------------------------------|-------------------------|---|---|-------|--|
|             |                                   | ,                             | Theory           |                         | Prac                          | Credits                 |   |   |       |  |
| Course Code | Course Name                       | END SEM<br>University<br>Exam | Mid term<br>exam | Teachers<br>Assessment* | END SEM<br>University<br>Exam | Teachers<br>Assessment* | L | P | Total |  |
| Soil 502    | Soil Fertility and Fertilizer use | 50                            | 30               | 00                      | 15                            | 05                      | 3 | 1 | 4     |  |

- 1. Legends: L Lecture; P Practical
- 2. \*Teacher Assessment shall be based on following components: Quiz / Assignment / Project / Participation in Class.

# **Objective**

 To impart knowledge about soil fertility and its control, and to understand the role of fertilizers and manures in supplying nutrients to plants so as to achieve high fertilizer use efficiency.

#### **Course outcomes**

- Describe the soil fertility and soil productivity, nutrient sources CO2
- Understand soil and fertilizer nitrogen sources, forms and various processes involved.
- Describe fertilizer use efficiency and blanket fertilizer recommendations

#### **Theory**

#### **UNIT I**

Soil fertility and soil productivity; fertility status of major soils group of India nutrient sources – fertilizers and manures; Criteria of essentiality, classification, law of minimum and maximum, essential plant nutrients - functions and deficiency symptoms, Nutrient uptake, nutrient interactions in soils and plants; long term effect of manures and fertilizers on soil fertility and crop productivity.

#### **UNIT II**

Soil and fertilizer phosphorus - forms, immobilization, mineralization, reactions in acid and alkali soils; factors affecting phosphorus availability in soils; phosphatic fertilizers - behavior in soil sand management under field conditions. Potassium - forms, equilibrium in soils and its agricultural significance; mechanism of potassium fixation; management of potassium fertilizers under field conditions.

#### UNIT III

Sulphur - source, forms, fertilizers and their behavior in soils; role in crops and human health; calcium and magnesium—factors affecting their availability in soils; management of sulphur, calcium and magnesium fertilizers. Micronutrientep://www.plutaifsein.coils and plants; factors affecting their availability and correction of their deficiencies in plants; role of chelates in nutrient availability.

- Chemical analysis of soil for total and available nutrients(major and micro)
- Analysis of plants for essential elements (major and micro

#### **Suggested Readings**

- Brady NC & Weil RR. 2002. The Nature and Properties of Soils. 13th Ed. Pearson Edu.
- Kabata-Pendias A & Pendias H. 1992. Trace Elements in Soils and Plants. CRC Press.
- Kannaiyan S, Kumar K & Govindarajan K. 2004. Biofertilizers Technology. Scientific Publ.
- Leigh JG. 2002. Nitrogen Fixation at the Millennium. Elsevier.
- Mengel K & Kirkby EA. 1982. Principles of Plant Nutrition. International Potash Institute, Switzerland.
- Mortvedt JJ, Shuman LM, Cox FR & Welch RM. 1991. Micronutrients in Agriculture. 2nd Ed. SSSA, Madison.
- Pierzinsky GM, Sims TJ & Vance JF. 2002. Soils and Environmental Quality. 2nd Ed. CRC Press.
- Stevenson FJ & Cole MA. 1999. Cycles of Soil: Carbon, Nitrogen, Phosphorus, Sulphur, Micronutrients. John Wiley & Sons.
- Tisdale SL, Nelson SL, Beaton JD & Havlin JL. 1999. Soil Fertility and Fertilizers. 5th Ed. Prentice Hall of India.
- Troeh FR & Thompson LM. 2005. Soils and Soil Fertility. Blackwell.

(Prof. Vinod Dhar) Chairperson - Board of Studies, Dean-Faculty of Agriculture, Controller of Examination, SVVV, Indore

(Dr. K. N. Guruprasad) SVVV, Indore

(Dr. Shishir Jain) SVVV, Indore

(Dr. Arvind Singh) Registrar, SVVV, Indore



## Shri Vaishnav Vidyapeeth Vishwavidyalaya, Indore Shri Vaishnav Institute of Agriculture M.Sc. (Ag.) Soil Science and Agricultural Chemistry

|             |                               | TEACHING & EVALUATION SCHEME  |                  |                         |                               |                         |   |   |       |  |
|-------------|-------------------------------|-------------------------------|------------------|-------------------------|-------------------------------|-------------------------|---|---|-------|--|
|             |                               | ,                             | Theory           |                         | Pract                         | Credits                 |   |   |       |  |
| Course Code | Course Name                   | END SEM<br>University<br>Exam | Mid term<br>exam | Teachers<br>Assessment* | END SEM<br>University<br>Exam | Teachers<br>Assessment* | L | P | Total |  |
| SOIL 508    | Soil, Water and Air Pollution | 50                            | 30               | 00                      | 15                            | 05                      | 2 | 1 | 3     |  |

- 1. Legends: L Lecture; P Practical
- 2. \*Teacher Assessment shall be based on following components: Quiz / Assignment / Project / Participation in Class.

# **Objective**

• To make the students aware of the problems of soil, water and air pollution associated with use of soils for crop production.

#### **Course outcomes**

- Describe the soil fertility and soil productivity, nutrient sources.
- Understand soil and fertilizer nitrogen sources, forms and various processes involved.
- Describe fertilizer use efficiency and blanket fertilizer recommendations.

## Theory

#### **UNIT I**

Soil, water and air pollution problems associated with agriculture, nature and extent.

#### **UNIT II**

Nature and sources of pollutants – agricultural, industrial, urban wastes, fertilizers and pesticides, acid rains, oil spills etc.; air, water and soil pollutants - their CPC standards and effect on plants, animals and human beings.

#### **UNIT III**

Sewage and industrial effluents – their composition and effect on soil properties/health, and plant growth and human beings; soil as sink for waste disposal. Pesticides – their classification, behavior in soil and effect on soil microorganisms.

#### **UNIT IV**

Toxic elements—their sources, behavior in soils, effect on nutrients availability, effect on land and human health. Pollution of water resources due to leaching of nutrients and pesticides from soil; emission of greenhouse gases—carbon dioxide, methane & nitrous oxide.

#### **UNIT V**

### **Suggested Readings**

- Lal R, Kimble J, Levine E & Stewart BA. 1995. Soil Management and Greenhouse Effect.CRC Press.
- Middlebrooks EJ. 1979. *Industrial Pollution Control*. Vol. I. *Agro- Industries*. John Wiley Interscience. Ross SM. *Toxic Metals in Soil Plant Systems*. John Wiley & Sons.
- Vesilund PA & Pierce 1983. Environmental Pollution and Control. Ann Arbor Science Publ.

(Prof. Vinod Dhar) Chairperson - Board of Studies, SVVV, Indore (Dr. K. N. Guruprasad) Dean-Faculty of Agriculture, SVVV, Indore (Dr. Shishir Jain) Controller of Examination, SVVV, Indore (Dr. Arvind Singh) Registrar, SVVV, Indore



# Shri Vaishnav Vidyapeeth Vishwavidyalaya, Indore **Shri Vaishnav Institute of Agriculture**

M.Sc. (Ag.) Soil Science and Agricultural Chemistry

|             |                                              | TEACHING & EVALUATION SCHEME  |                  |                             |                               |                             |   |     |       |  |
|-------------|----------------------------------------------|-------------------------------|------------------|-----------------------------|-------------------------------|-----------------------------|---|-----|-------|--|
|             |                                              | Theory                        |                  |                             | Pract                         | Credits                     |   | its |       |  |
| Course Code | Course Name                                  | END SEM<br>University<br>Exam | Mid term<br>exam | Teachers<br>Assessment<br>* | END SEM<br>University<br>Exam | Teachers<br>Assessment<br>* | L | P   | Total |  |
| Agron 502   | Principle and Practices of Soil<br>Fertility | 50                            | 30               | 00                          | 15                            | 05                          | 2 | 1   | 3     |  |

- 1. Legends: L Lecture; P Practical
- 2. \*Teacher Assessment shall be based on following components: Quiz / Assignment / Project / Participation in Class.

#### **Course outcome:**

To impart knowledge of fertilizers and manures as sources of plant nutrients and apprise about the integrated approach of plant nutrition and sustainability of soil fertility.

#### **Theory**

**UNIT I:** Soil fertility and productivity - factors affecting; features of good soil management; problems of supply and availability of nutrients; relation between nutrient supply and crop growth; organic farming – basic concepts and definitions.

**UNIT II:** Criteria of essentiality of nutrients; Essential plant nutrients – their functions, nutrient deficiency symptoms; transformation and dynamics of major plant nutrients.

**UNIT III:** Preparation and use of farmyard manure, compost, green manures, vermicompost, biofertilizers and other organic concentrates their composition, availability and crop responses; recycling of organic wastes and residue management.

UNIT IV: Commercial fertilizers; composition, relative fertilizer value and cost; crop response to different nutrients, residual effects and fertilizer use efficiency, fertilizer mixtures and grades; agronomic, chemical and physiological methods of increasing fertilizer use efficiency; nutrient interactions.

**UNIT V:** Time and methods of manures and fertilizers application; foliar application and its concept; relative performance of organic and inorganic manures; economics of fertilizer use; integrated nutrient management; use of vermicompost and residue wastes in crops.

#### **Practical**

- Determination of soil pH, ECe, organic C, total N, available N, P, K and S in soils
- Determination of total N, P, K and S in plants
- Interpretation of interaction effects and computation of economic and optimal yield

#### Suggested Readings PDF Creator - PDF4Free v

Spagested Readings http://www.pdf4free.com
Brady NC & Weil R.R 2002. The Nature and Properties of Soils. 13th Ed. Pearson Edu.



# Shri Vaishnav Vidyapeeth Vishwavidyalaya, Indore Shri Vaishnav Institute of Agriculture M.Sc. (Ag.) Soil Science

|                          | 2120001 (2                                  | -8.7 ~ 0                      | ~                | •                       |                               |                         |   |      |       |
|--------------------------|---------------------------------------------|-------------------------------|------------------|-------------------------|-------------------------------|-------------------------|---|------|-------|
| TEACHING & EVALUATION SO |                                             |                               |                  |                         |                               |                         |   |      |       |
|                          |                                             | ,                             | Theory           |                         | Pract                         | tical                   |   | Cred | its   |
| Course Code              | Course Name                                 | END SEM<br>University<br>Exam | Mid term<br>exam | Teachers<br>Assessment* | END SEM<br>University<br>Exam | Teachers<br>Assessment* | L | P    | Total |
| Agron 503                | Principles and Practices of Weed Management | 50                            | 30               | 00                      | 15                            | 05                      | 2 | 1    | 3     |

- 1. Legends: L Lecture; P Practical
- 2. \*Teacher Assessment shall be based on following components: Quiz / Assignment / Project / Participation in Class.

# Objective

To familiarize the students about the weeds, herbicides and methods of weed control. Theory

#### Unit I

Weed biology, and ecology and classification, crop-weed competition including allelopathy; principles and methods of weed control and classification management; weed indices, weed shift in different eco-systems.

#### **Unit II**

Herbicides introduction and history of their development; classification based on chemical, physiological application and selectivity; mode and mechanism of action of herbicides.

#### **Unit III**

Herbicide structure - activity relationship; factors affecting the efficiency of herbicides; herbicide formulations, herbicide mixtures, sequential application of herbicides, rotation; weed control through use of nano-herbicides and bio-herbicides, myco-herbicides bio-agents, and allelochemicals; movement of herbicides in soil and plant, Degradation of herbicides in soil and plants; herbicide resistance, residue, persistence and management; development of herbicide resistance in weeds and crops and their management, herbicide combination and rotation.

#### **Unit IV**

Weed management in major crops and cropping systems; alien, invasive and parasitic weeds and their management; weed shifts in cropping systems; aquatic and perennial weed control; weed

## **Teaching methods/activities**

Classroom teaching with AV aids, group discussion, field visit to identify weeds.

# Learning outcome

Basic knowledge on weed identification and control for crop production.

# **Suggested Reading**

- Böger, Peter, Wakabayashi, Ko, Hirai, Kenji (Eds.). 2002. Herbicide Classes in Development. Mode of Action, Targets, Genetic Engineering, Chemistry. Springer.
- Chauhan B and Mahajan G. 2014. Recent Advances in Weed Management. Springer.
- Das TK. 2008. Weed Science: Basics and Applications, Jain Brothers (New Delhi).
- Fennimore, Steven A and Bell, Carl. 2014. Principles of Weed Control, 4th Ed, California Weed Sci. Soc.
- Gupta OP. 2007. Weed Management: Principles and Practices, 2nd Ed.
- Jugulan, Mithila (ed). 2017. Biology, Physiology and Molecular Biology of Weeds. CRC Press
- Monaco TJ, Weller SC and Ashton FM. 2014. Weed Science Principles and Practices, Wiley
- Powles SB and Shaner DL. 2001. Herbicide Resistance and World Grains, CRC Press.
- Walia US. 2006. Weed Management, Kalyani. Zimdahl RL. (ed). 2018. Integrated Weed Management for Sustainable Agriculture, B. D. Sci. Pub.

(Prof. Vinod Dhar) Chairperson - Board of Studies, SVVV, Indore (Dr. K. N. Guruprasad) Dean-Faculty of Agriculture, SVVV, Indore (Dr. Shishir Jain) Controller of Examination, SVVV, Indore (Dr. Arvind Singh) Registrar, SVVV, Indore



# Shri Vaishnav Vidyapeeth Vishwavidyalaya, Indore Shri Vaishnav Institute of Agriculture M.Sc. (Ag.) Soil Science

|                       |                                            | TEACHING & EVALUATION SCHEME  |                  |                         |                               |                         |   |   |       |  |  |
|-----------------------|--------------------------------------------|-------------------------------|------------------|-------------------------|-------------------------------|-------------------------|---|---|-------|--|--|
|                       |                                            | 7                             | Γheory           |                         | Prac                          | Credits                 |   |   |       |  |  |
| Course Code           | Course Name                                | END SEM<br>University<br>Exam | Mid term<br>exam | Teachers<br>Assessment* | END SEM<br>University<br>Exam | Teachers<br>Assessment* | L | P | Total |  |  |
| PGS 504<br>(e-Course) | Basic Concepts in Laboratory<br>Techniques | 00                            | 00               | 00                      | 60                            | 40                      | 0 | 1 | 1     |  |  |

- 1. Legends: L Lecture; P Practical
- 2. \*Teacher Assessment shall be based on following components: Quiz / Assignment / Project / Participation in Class.

# **Objective**

To acquaint the students about the basics of commonly used techniques in laboratory.

#### **Practical**

Safety measures while in Lab; Handling of chemical substances; Use of burettes, pipettes, measuring cylinders, flasks, separatory funnel, condensers, micropipettes and vaccupets; washing, drying and sterilization of glassware; Drying of solvents/chemicals. Weighing and preparation of solutions of different strengths and their dilution; Handling techniques of solutions; Preparation of different agro-chemical doses in field and pot applications; Preparation of solutions of acids; Neutralisation of acid and bases; Preparation of buffers of different strengths and pH values. Use and handling of microscope, laminar flow, vacuum pumps, viscometer, thermometer, magnetic stirrer, micro-ovens, incubators, sand bath, water bath, oil bath; Electric wiring and earthing. Preparation of media and methods of sterilization; Seed viability testing, testing of pollen viability; Tissue culture of crop plants; Description of flowering plants in botanical terms in relation to taxonomy

# **Suggested Readings**

- Furr AK. 2000. CRC HandBook of Laboratory Safety. CRC Press.
- Gabb MH & Latchem WE. 1968. *A Handbook of Laboratory Solutions*. Chemica lPubl. Co.



# Shri Vaishnav Vidyapeeth Vishwavidyalaya, Indore Shri Vaishnav Institute of Agriculture M.Sc. (Ag.) Soil Science

|                       | TEACHING & EVALUATION SCHEM                                                   |                               |               |                         |                               |                         |         |   |       |  |
|-----------------------|-------------------------------------------------------------------------------|-------------------------------|---------------|-------------------------|-------------------------------|-------------------------|---------|---|-------|--|
|                       |                                                                               | Theory                        |               |                         | Practical                     |                         | Credits |   | its   |  |
| Course Code           | Course Name                                                                   | END SEM<br>University<br>Exam | Mid term exam | Teachers<br>Assessment* | END SEM<br>University<br>Exam | Teachers<br>Assessment* | L       | P | Total |  |
| PGS 505<br>(e-Course) | Agricultural Research,<br>Research Ethics and Rural<br>Development Programmes | 50                            | 40            | 10                      | 00                            | 00                      | 1       | 0 | 1     |  |

- 1. Legends: L Lecture; P Practical
- 2. \*Teacher Assessment shall be based on following components: Quiz / Assignment / Project / Participation in Class.

# **Objective**

To enlighten the students about the organization and functioning of agricultural research systems at national and international levels, research ethics, and rural development programmes and policies of Government.

#### **Theory**

<u>UNIT I:</u> History of agriculture in brief; Global agricultural research system: need, scope, opportunities; Role in promoting food security, reducing poverty and protecting the environment; National Agricultural Research Systems(NARS) and Regional Agricultural Research Institutions;

<u>UNIT II:</u> Consultative Group on International Agricultural Research (CGIAR): International Agricultural Research Centres (IARC), partnership with NARS, role as a partner in the global agricultural research system, strengthening capacities at national and regional levels; International fellowships for scientific mobility.

<u>UNIT III:</u> Research ethics: research integrity, research safety in laboratories, welfare of animals used in research, computer ethics, standards and problems in research ethics.

<u>UNIT IV:</u> Concept and connotations of rural development, rural development policies and strategies. Rural development programmes: Community Development Programme, Intensive Agricultural District Programme,

<u>UNIT V:</u> Special group – Area Specific Programme, Integrated Rural Development Programme (IRDP), Panchayati Raj Institutions, Co-operatives, Voluntary Agencies/Non-Governmental Organisations. Critical evaluation of rural development policies and programmes. Constraints in PDF Creator - PDF4Free v3.0 implementation of rural policies and programmes.